Oxazolopiperidin-2-ones as Type II' β-Turn Mimetics: Synthesis and Conformational Analysis

M. Angels Estiarte, Mario Rubiralta, and Anna Diez*
Laboratori de Química Orgànica, Facultat de Farmàcia, Universitat de Barcelona, Av. J oan XXIII, 08028-Barcel ona, Spain
Michael Thormann and Ernest Giralt
Departament de Química Orgànica, Facultat de Química, Universitat de Barcel ona, c/ Martí i Franquès, 08028-Barcel ona, Spain
adiez@farmacia.far.ub.es

Received March 21, 2000

Abstract

We describe a straightforward synthesis of 9-substituted 3-aminooxazol idinopi peridin-2-ones 4. Some derivatives were prepared for use in peptide synthesis as rigidified surrogates of the Ala-Pro dipeptide. Analysis of the amide derivatives $\mathbf{1 4}$ by NMR experiments and molecular mechanics/ dynamics cal culations shows that the major isomer 14a has a stronger propensity than the minor isomer 14b to adopt β-turn conformations, and the calculations indicate that in water 14a adopts a stable β II' turn conformation.

Introduction

A large number of bicyclic systems have been reported as β-turn mimetics, including the 6,5 -bicyclic systems type 1-3 (Figure 1). ${ }^{1}$ In particular, thiazol opi peridones 1, first introduced as β-turn mimetics by Nagai and coworkers, ${ }^{2}$ have been extensively used to study numerous bioactive peptides. ${ }^{3-9}$ However, we have found that oxazolopiperidones 4 have not been studied as constrained pseudopeptides.

Despite the fact that la induces a $\beta \| I^{\prime}$ turn conformation in collaboration with the adjacent residues, this

[^0]
1a (3S,6S,9R)
1b (3S,6R,9R)

3a (3S,6R,9S) 3b $(3 S, 6 S, 9 S)$

4a ($3 S, 6 S, 9 S$)
4b $(3 S, 6 R, 9 S)$

Figure 1.
β-turn dipeptide seems not to be very useful for improving the activity of small peptides, where the β-turn position itself plays some role in interaction with the receptor site. ${ }^{10}$ Interestingly, recent molecular modeling cal culations on the tetrapeptideAc-Ala-\{1a\}-Ala-NHMe indi cate that the geometry of a turn induced by thiazol opi peridone 1a differs significantly from that of an ideal β-turn. ${ }^{11}$ In addition, the incorporation of each epimer $\mathbf{l a}$ or $\mathbf{1 b}$ in a bioactive peptide has been shown to provoke distinct changes in its bioactivity. ${ }^{8 a}$
We thought that the isosteric substitution of the sulfur in 7-position by an oxygen atom (Figure1) might improve the binding properties of the β-turn dipeptide, since oxygen could act as a better hydrogen bond acceptor on the "external part" of the turn. With the aim of establishing the possible usefulness of oxazolopiperidones 4 as β-turn mimetics, we have prepared these bicyclic lactams

[^1]

Figure 2.

Figure 3. NOESY correlations and stereochemical assignment of oxazol opiperidones Cbz-4a-OMe and Cbz-4b-OMe.

Figure 4.
and their derivatives $\mathbf{1 4}$ (Figure 6). The conformational analysis of 14, both by NMR experiments and by molecular modeling calculations, indicates that oxazol opi peridone 14a mimics a β II' turn and that 14b adopts a β-turn conformation that does not correspond to the classified types. ${ }^{12}$

[^2]

Figure 5.

Figure 6.

Results and Discussion

Synthesis and Structural Assignment. Oxazolopiperidones Cbz-4-OMe were prepared by condensation of aldehyde 5 and Ser-OMe in a "one pot" process. Aldehyde 5 was obtained from Cbz-(S)-glutamic acid in three steps, following Fukuyama's procedure. ${ }^{13,14}$ The condensation reaction of aldehyde 5 with Ser-OMe was assayed in a number of experimental conditions, summarized in Table 1. We observed that the yields and the number of stereoisomers varied according to the reaction conditions. When the reaction was carried out at room temperature in pyridine, followed by evaporation of the base and subsequent treatment with $\mathrm{K}_{2} \mathrm{CO}_{3}$ in MeOH (entry 7), the reaction yiel ded oxazolopiperidone Cbz-4a-OMe as the sole product. In the other conditions assayed we obtained mixtures of the three Cbz/OMe stereoisomers $\mathbf{4 a}, \mathbf{4 b}$, and 4c.

Compounds Cbz-4-OMe were identified from their analytical data. Thus, the most characteristic signals of

[^3]Table 1. Condensation Conditions Assayed to Obtain Oxazolopiperidones Cbz-4-OMe

entry	ref	reagents	solvent	conditions	Cbz-4-OMe (a:b:c)	yield (\%)
1	15	$\mathrm{Et}_{3} \mathrm{~N}, \mathrm{Na}_{2} \mathrm{SO}_{4}$	$\mathrm{Et}_{2} \mathrm{O}$	$0^{\circ} \mathrm{C}-\mathrm{rt}, 24 \mathrm{~h}$		8
2	8a	(1) NaHCO_{3}	EtOH, $\mathrm{H}_{2} \mathrm{O}$	$\mathrm{rt}, 16 \mathrm{~h}$	10:5.5:1	
		(2) DMF	DMF	$42{ }^{\circ} \mathrm{C}, 24 \mathrm{~h}$		
3	16	TFA	1,2-dichloroethane	reflux, 48 h	10:5.7:1	45
5		$\mathrm{Et}_{3} \mathrm{~N}$	toluene	reflux, Dean-Stark, 48 h	10:5.7:1	58
6	176	pyridine	pyridine	reflux, 18 h	10:5:1	40
7		(1) pyridine	pyridine	rt, 6 d	1:0:0	54
		(2) $\mathrm{K}_{2} \mathrm{CO}_{3}$	MeOH	$\mathrm{rt}, 4 \mathrm{~h}$		

the oxazol opiperidone backbone in the ${ }^{1} \mathrm{H}$ NMR spectra are as follows: an AMX system consisting of two double doublets ($J=9,7 \mathrm{~Hz}$) and a triplet $(\mathrm{J}=9 \mathrm{~Hz}$), that correspond to the C8- and C9-protons, and the signals of the protons $\mathrm{H}-3$ and $\mathrm{H}-6$, at $\delta \sim 4.1$ and ~ 4.9. In the ${ }^{13} \mathrm{C}$ NMR spectra, the bicyclic system typically shows the methine signals at $\delta \sim 87$ and $\delta \sim 51$, corresponding to C6 and C3, respectively. In isomer Cbz-4a-OMe, H-6 resonated at $\delta 4.91$ as a double doublet (J $=9$ and 4 Hz), and $\mathrm{H}-3$ appeared as a double triplet ($\mathrm{J}=11$ and 5 Hz) at δ 4.16. These multiplicities indicated that both $\mathrm{H}-3$ and H-6 adopt a pseudoaxial disposition (Figure 3). In compound Cbz-4b-OMe, $\mathrm{H}-3$ also appears as a double triplet ($J=11,5 \mathrm{~Hz}, \delta 4.10$), and is therefore in an axial disposition; however, H-6 appeared here as a broad signal at $\delta 4.83$, proving that $\mathbf{C b z - 4 b - O M e}$ is the C6-epimer of Cbz-4a-OM e. In contrast, the third isomer Cbz-4c-OMe was identified as the C3-epimer of compound Cbz-4aOMe: the H-3 proton resonated as a triplet ($J=5 \mathrm{~Hz}$) at $\delta 4.02$, whereas $\mathrm{H}-6$ was a double doublet $(J=8,6$ Hz) at 4.90 ppm . The fact that Cbz-4c-OMe was detected when the condensation was performed at temperatures above $40^{\circ} \mathrm{C}$ (Table 1) meant that once Cbz-4a-OMe was formed, it underwent a limited degree of epimerization on C3 in these conditions. ${ }^{18}$

The absolute configuration of oxazolopiperidones 4a and $\mathbf{4 b}$ was determined from the NOESY experiments (Figure 3). Thus, in oxazol opiperidone Cbz-4a-OM e, H-6 was correlated with $\mathrm{H}-4$ and $\mathrm{H}-8$, whereas $\mathrm{H}-3$ was correlated with H-5. Since the S configuration of C3 was fixed, Cbz-4a-OMe could be identified as the (3S,6S,9S) isomer. In compound Cbz-4b-OMe, protons H-6, H-3, and H-5 were correlated, and this isomer was thus identified as (3S,6R,9S).

When we tried to rationalize the synthetic outcome of the condensation reaction, we observed that the only rel evant difference in the experimental conditions used was the temperature (Table 1). When the reaction was carried out at $0^{\circ} \mathrm{C}$ no reaction was observed, at room temperature only Cbz-4a-OMe was obtained, and when we heated to temperatures over $40^{\circ} \mathrm{C}$, the epimeric mixtures were formed. These results can be explained if we consider that there are two mechanisms that can lead to the formation of the oxazolopiperidone bicyclic system (Figure 4). Thus, if Ser-OMe reacts first with the alde-

[^4]hyde function of compound 5 to form imine $\mathbf{6}$, the al cohol group can then attack either side of the intermediate imine, resulting in an epimeric mixture of oxazolidines 7 (pathway A). Subsequent lactamization would yield the epimeric mixture of oxazolopiperidones $\mathbf{4 a}$ and $\mathbf{4 b}$. This mechanism explains why the a:b ratios obtained were always similar (about 10:6). However, it does not explain how a single isomer can be obtained at room temperature. Alternatively, if the closure of the oxazolidine ring took place on the acyliminium salt 8, ${ }^{20}$ the approach of the alcohol group on C6 could be stereocontrolled (pathway B). ${ }^{21}$

Treatment of pure Cbz-4a-OM e with TFA in dry 1,2dichloroethane for 2.5 days at room temper ature yielded a C6 epimeric mixture of isomers a:b of Cbz-4-OMe in a 9:1 proportion (NMR), which increased up to $2: 1$ when the mixture was refluxed for 3 days (Table 1, entry 3). ${ }^{22}$ This indicates that in the acid medium, an equilibrium with the intermediate acyliminium salt $\mathbf{8}$ is established by protonation on the 07 oxigen atom, and that the ring closure is not fully stereoselective in the acid medium.

Several derivatives of oxazolopi peridone 4a were prepared for further application in peptide synthesis (Figure 5). Selective hydrogenolysis of the $\mathrm{N}-\mathrm{Cbz}$ protecting group in the presence of $\mathrm{Boc}_{2} \mathrm{O}$ yielded the N -Boc/OM e derivative 9. When the hydrogenolysis was done in the absence of $\mathrm{Boc}_{2} \mathrm{O}$, pseudodipeptide 10 was obtained quantitatively, and compound $\mathbf{1 0}$ was transformed to the N-F moc/ OMe 11. Selective cleavage of the ester was performed on Cbz-4a-OMe and on $\mathbf{1 1}$ to yield $\mathbf{1 2}$ (Cbz/OH) and $\mathbf{1 3}$ (F moc/OH). The stability of the bicyclic system in acid/ base conditions that are common in peptide synthesis was also checked. Thus, compound $\mathbf{1 2}$ was recovered unaltered after treatment with a 20% sol ution of piperidine in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at room temperature; and compound $\mathbf{1 3}$ was unaltered in a 30% solution of TFA in DMF. Most importantly, no epimerization was observed during these experiments.

Finally, we prepared the Cbz/NHMe compounds 14a and 14b that we needed for the conformational analysis by NMR experiments by treatment of Cbz-4a-OMe and Cbz-4b-OMe with MeNH_{2} (Figure 6).

Conformational Studies. To determine whether the oxazolopiperidone system can promote a β-turn formation, we performed conformational studies by NMR and

[^5]Table 2. Standard Torsion Angles in the Major $\boldsymbol{\beta}$-Turn Types ${ }^{12}$

turn	$\phi_{2}{ }^{\text {a }}$	$\psi_{2}{ }^{\text {a }}$	$\phi_{3}{ }^{\text {a }}$	$\psi 3^{\text {a }}$
β I	-60	-30	-90	0
$\left.\beta\right\|^{\prime}$	60	30	90	0
β II	-60	120	80	0
βI^{\prime}	60	-120	-80	0
β III	-60	-30	-60	-30
$\beta \mathrm{III}$	60	30	60	30

Figure 7. ${ }^{1} \mathrm{H}$ NMR chemical shift of the NH protons of pseudopeptide 14a at different proportions of DMSO- d_{6} in $\mathrm{CDCl}_{3}\left(25^{\circ} \mathrm{C}\right)$.
by molecular modeling. β-Turns are nonperiodic tetrapeptide segments which reverse the orientation of the peptide chain. ${ }^{12}$ The most general β turn features are the distance $R(R \leq 7 \AA)$ between the $\mathrm{C} \alpha$ atoms of the first and the fourth amino acids, and the dihedral angle $\tau\left(-90^{\circ} \leq \tau \leq+90^{\circ}\right)$ formed by the four $\mathrm{C} \alpha$ atoms. Many conformers fulfill these requirements. ${ }^{12 a}$ The major types ${ }^{12 e}$ show a characteristic hydrogen bond between the carbonyl function of the first amino acid and the amide group of the fourth. The major β turns (Table 2, Figure 8a) are classified according to the torsion angles of the second amino acid (ϕ_{2}, ψ_{2}) and of the third (ϕ_{3}, ψ_{3}). We shall maintain this classification for the β turn mimetics of the oxazol opiperidone type 14a and 14b.

Compounds 14a and 14b were used as the models because they possess the minimum structural elements required to form a β turn. NMR experiments allowed us to search for the characteristic intramol ecular hydrogen bond that would prove that oxazolopiperidones $\mathbf{1 4}$ form β turns. The molecular mechanics/dynamics (MM/MD) calculations were performed to provide further insight into the static and dynamic conformational properties of the two derivatives.

NMR Studies. 1. Chemical Shift and Addition of a Competitive Solvent. In solvents such as $\mathrm{CDCl}_{3}, \mathrm{NH}$ amide protons that are involved in hydrogen bonding resonate around $\delta 7-8$. In the ${ }^{1} \mathrm{H}$ NMR spectrum of compound 14a in CDCl_{3}, the carbamate $\mathrm{NH}\left(\mathrm{NH}_{\mathrm{i}}\right)$ resonates at $\delta 5.72$, and the amide $\mathrm{NH}\left(\mathrm{NH}_{i+3}\right)$ at $\delta 7.23$. This suggests that in CDCl_{3} the NH_{i} proton is free, while the NH_{i+3} proton is involved in a hydrogen bond. However, in DMSO both the NH_{i} and the NH_{i+3} protons undergo a downfield shift ($\Delta \delta=+1.99 \mathrm{ppm}$ and $\Delta \delta=$ +0.45 , respectively), which proves that in DMSO both are accessi ble to the solvent, i.e., that NH_{i+3} is no longer hydrogen-bonded in the presence of a competitive sol vent.
To prove that NH_{i+3} establishes an intramolecular hydrogen bond rather than an intermolecular one, and
to eval uate the strength of this hydrogen bond, we carried out a second experiment which consisted of running the ${ }^{1} \mathrm{H}$ NMR spectrum in a gradient of DMSO in $\mathrm{CDCl}_{3} .^{23}$ Thus, at low concentrations of DMSO, protons that are non-hydrogen-bonded or intermolecularly hydrogenbonded will immediately establish a bond with the DMSO, and will therefore quickly shift downfield. However, intramolecularly bonded protons are less accessible to DMSO, and will not shift until the intramolecular hydrogen bond is broken. Figure 7 summarizes the spectral evidence that NH_{i} shifted immediately, but that the NH_{i+3} proton needed a 20% solution of DMSO in CDCl_{3} to start shifting. This result demonstrated that in compound $\mathbf{1 4 a}$ the NH_{i+3} is intramolecularly hydrogenbonded, and that this hydrogen bond is stable until the concentration of the competitive solvent reaches 20%.

NMR Studies. 2. Temperature Coefficient. The temperature dependence of the ${ }^{1} \mathrm{H}$ NMR chemical shift of peptide NH protons also reflects their hydrogenbonding state. In this regard, several interpretations of the temperature coefficient ($\Delta \delta / \Delta \mathrm{T}$) values have been suggested. ${ }^{24}$ The most meaningful results are usually obtained in DMSO: coefficients above $-4 \mathrm{ppb} / \mathrm{K}$ (in absolute value) indicate an external orientation of the NH amide proton, whereas coefficients below $-3 \mathrm{ppb} / \mathrm{K}$ (in absolute value) indicate shielding from the solvent. However, in our case the intramolecular hydrogen bond that NH_{i+3} establishes was cleaved in DMSO, and a hightemperature coefficient value would be expected in DMSO. In accordance with this expectation, we observed $\Delta \delta / \Delta \mathrm{T}\left(\mathrm{NH}_{\mathrm{i}+3}\right)=-5.4 \mathrm{ppb} / \mathrm{K}$.

Scolastico and co-workers have recently described the hydrogen-bonding states of amide protons in CDCl_{3}, taking into account all their ${ }^{1} \mathrm{H}$ NMR parameters. ${ }^{24 \mathrm{a}}$ They distinguish three different states: (a) strongly bonded amide protons: Iow-temperature coefficient, high chemical shift value ($\delta=7.0$), and small $\Delta \delta$ upon addition of competitive solvent ($\Delta \delta \leq 0.2 \mathrm{ppm}$); (b) non-hydrogenbonded amide protons: low-temperature coefficient ($\Delta \delta /$ $\Delta \mathrm{T}=-2.6 \mathrm{ppb} / \mathrm{K}$), low chemical shift ($\delta=7$), and high $\Delta \delta$ upon addition of competitive solvent ($\Delta \delta \geq 0.2 \mathrm{ppm}$); and (c) amide protons in equilibrium between hydrogenbonded and non-hydrogen-bonded states: Iarge temperature coefficient ($\Delta \delta / \Delta \mathrm{T}>-2.6 \mathrm{ppb} / \mathrm{K}$).

According to this classification, our results indicate that the amide NH proton is weakly hydrogen bonded, in equilibrium with a non-hydrogen-bonded state ($\Delta \delta /$ $\left.\Delta \mathrm{T}\left(\mathrm{NH}_{\mathrm{i}+3}\right)=-3.4 \mathrm{ppb} / \mathrm{K}\right)$, whereas the carbamate proton is non-hydrogen-bonded $\left(\Delta \delta / \Delta \mathrm{T}\left(\mathrm{NH}_{\mathrm{i}}\right)=-4.6 \mathrm{ppb} / \mathrm{K}\right)$.

Similar results were obtained for isomer 14b by NMR experiments. The chemical shifts in CDCl_{3} and addition of competitive solvent experiments showed that the NH_{i} carbamate proton is non-hydrogen-bonded and that the NH_{i+3} amide proton is intramol ecularly hydrogen-bonded, although weakly, i.e., the hydrogen bond breaks at a 20% concentration of DMSO in CDCl_{3}, and the temperature coefficient in CDCl_{3} is $\Delta \delta / \Delta \mathrm{T}\left(\mathrm{NH}_{i+3}\right)=-3.3 \mathrm{ppb} / \mathrm{K}$ (CDCl_{3}) (see Supporting Information).

Molecular Modeling Calculations. According to the simulated annealing calculations (see the Experimental

[^6](a)

(b)

(c)

Figure 8. (a) Minimum energy conformation of compound $\mathbf{1 4 a}$ resulting from simulated annealing calculations (Table 3), in continuum. Used β turn descriptors are also indicated. (b) Stereoview of (a). (c) Snapshot of compound 14a after 500 ps simulation time in DMSO.

Table 3. Population of Secondary Structures of Compounds 14, As Obtained by Simulated Annealing

compd	ϕ_{2}	ψ_{2}	ϕ_{3}	ψ_{3}	E^{a}	conformer
$\mathbf{1 4 a}$	52.1	-123.4	-68.4	-6.0	-61.9	βI^{\prime}
	-169.0	-141.7	-64.3	114.9	-56.5	L -shaped
14b	58.8	-130.2	-63.1	-8.7	-60.8	$\beta I I^{\prime}$
	-167.3	-166.3	-38.5	115.9	-56.6	L -shaped

a Energies in kcal/mol.
Table 4. β-Turn Propensities of Compounds 14 As Derived from MD Calculations in Different Media

compd	medium	$\beta_{\text {T }}{ }^{\text {a,b }}$	$\beta 1^{\text {a }}$	$\beta 1^{\text {a }}$	$\beta 1{ }^{\text {a }}$	$\beta \mathrm{I}^{\text {a }}$	$\beta 1 I^{\text {a }}$	$\beta \\| I^{\prime a}$
14a	continuum	98.1	0.1	0.0	0.0	93.3	0.0	0.0
	DMSO	100.0	0.0	0.0	0.0	0.0	0.0	0.0
	$\mathrm{H}_{2} \mathrm{O}$	99.1	0.1	0.0	0.0	83.8	0.1	0.0
14b	continuum	67.7	0.0	0.0	0.0	42.9	0.0	0.0
	DMSO	89.5	0.0	0.0	0.0	0.0	0.0	0.0
	$\mathrm{H}_{2} \mathrm{O}$	18.7	0.0	0.0	0.0	3.0	0.0	0.0

${ }^{\mathrm{a}}$ In percent. ${ }^{\mathrm{b}}$ Based on the general β-turn criteria R and τ.
Section), epimers 14a and 14b present two distinct conformers (Table 3). In both cases, the most stable conformer corresponds to a type II' β-turn (Figure 8), and the second conformer adopts an L-shaped structure ${ }^{25}$ due to the more extended conformation of the $i+1$ residue in the pseudodipeptide moiety. The βI^{\prime} turns are about $4-5 \mathrm{kcal} / \mathrm{mol}$ more stable than the corresponding Lshaped conformations, and the β II' turn of compound 14a is about $1 \mathrm{kcal} / \mathrm{mol}$ more stable than that of compound 14b. The distance of the $\mathrm{O}-\mathrm{H}$ hydrogen bond ($d=1.92$ \AA) of the β II' turns is the same in both isomers, but the hydrogen bond angle $\angle \mathrm{OHN}$ is 162.0° for $\mathbf{1 4 a}$ and 149.8° for 14b. This leads to a weaker hydrogen bond in 14b, which might account for its slightly lower stabilization.

In a next step, the βI^{\prime} conformers of both compounds were taken as the starting points for MD calculations in order to get some insight into their dynamic behavior in different media. The results are summarized in Table 4. The β II' turn conformation of compound 14a shows no major dihedral angle fluctuations, and remains very stable in the continuum during 10 ns . In water, the preferred conformation is also a βI^{\prime} turn. In DMSO, despite the fact that 14a shows a tendency to adopt β-turn conformations and not L-shaped ones, these turns do not correspond to any of the major β-turn types. In DMSO the intramolecular hydrogen bond is broken, allowing the amide proton to point outward and form a hydrogen bond with the solvent. This behavior is consistent with the experimental NMR data.

In contrast, pseudopeptide 14b flips to the L-shaped form after 2 ns and flips back to the β II' turn conformation after 5.5 ns . In DMSO, the competitive solvent again breaks the intramolecular hydrogen bond, as observed by NMR. More interestingly, the proportion of β-conformations in water is extremely low (less than 20\%), and the analysis of the trajectory shows that isomer 14b adopts the L-shaped form after about 50 ps and maintains it to the end of the evolution time.

These conformational studies indicate that pseudopeptide 14a $(6 \mathrm{H}-\beta)$ is a good βI^{\prime} turn mimetic in water. In contrast, 14b $(6 \mathrm{H}-\alpha)$ exhibits a pronounced ψ_{2} flexibility in the bicyclic framework, which leads to a preference for an L-shaped conformation in water.

[^7]
Conclusion

We have established a straightforward synthesis of the epimeric oxazol opiperidin-2-one systems (3S,6S,9S)-Cbz-4a-OMe and (3S,6R,9S)-Cbz-4b-OMe. Experimental and theoretical conformation studies by NMR and by MM/ MD have been performed on the N-methyl derivatives $\mathbf{1 4 a}$ and 14b. These demonstrate that 14a is an excellent βI^{\prime} turn mimetic, whereas $\mathbf{1 4 b}$ is more flexible and adopts either unusual β-turns or L-shaped conformations. The bicyclic system (3S,6S,9S)-4a is therefore a new dipeptide scaffold for the synthesis of β II' turn mimetics, which might have its application in bioactive peptidebased rational drug design.

Experimental Section ${ }^{26}$

Methyl (3S,6RS,9S)-3-Benzyloxycarbonylamino-2-oxo-7,1-oxazabicyclo[4.3.0]nonane-9-carboxylates (Cbz-4aOMe and Cbz-4b-OMe). Method A (Table 1, Entry 7). A solution of aldehyde $5^{27}(12.8 \mathrm{~g}, 46.2 \mathrm{mmol})$ and the hydrochloride of (S)-Ser-OMe ($7.93 \mathrm{~g}, 50.9 \mathrm{mmol}$) in dry pyridine $(462 \mathrm{~mL})$ was stirred at room temperature for 10 d . The reaction mixture was filtered and the solvent evaporated. The residue was dissolved in dry $\mathrm{CH}_{3} \mathrm{OH}$ (380 mL), and solid $\mathrm{K}_{2} \mathrm{CO}_{3}(4.4 \mathrm{~g}, 32.3 \mathrm{mmol})$ was added until the starting substrate disappeared (TLC control, 3-5 h). The reaction mixture was filtered, the solvent was evaporated, and the resulting oil was chromatographed (hexane/AcOEt, $7: 3$) to yield oxazol opiperidone (3S,6S,9S)-Cbz-4a-OMe ($8.7 \mathrm{~g}, 54 \%$) as a single isomer: $[\alpha]^{22}{ }_{\mathrm{D}}=-100.1$ (c 1, CHCl_{3}); IR (NaCl) 3390, $1721,1667 \mathrm{~cm}^{-1}{ }^{1}{ }^{1} \mathrm{H}$ NMR $1.61-1.87(\mathrm{~m}, 2 \mathrm{H}), 2.32-2.38(\mathrm{~m}$, $1 \mathrm{H}), 2.52(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.84(\mathrm{dd}, \mathrm{J}=9,7 \mathrm{~Hz}, 1 \mathrm{H})$, 4.16 (dt, J $=11,5 \mathrm{~Hz}, 1 \mathrm{H}), 4.44(\mathrm{~d}, \mathrm{~J}=9 \mathrm{~Hz}, 1 \mathrm{H}), 4.68$ (dd, J $=9,7 \mathrm{~Hz}, 1 \mathrm{H}), 4.91(\mathrm{dd}, \mathrm{J}=9,4 \mathrm{~Hz}, 1 \mathrm{H}), 5.12(\mathrm{~s}, 2 \mathrm{H}), 5.61(\mathrm{~d}$, $J=5 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{~s}, 5 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR 24.9, 26.6, 52.0, 52.6, $55.8,66.8,68.4,87.9,127.9,128.4,136.2,156.4,166.7,170.1$.

Method B (Table 1, Entry 5). To a solution of the hydrochloride of (S)-Ser-OMe (1.3 g, 8.4 mmol) and $\mathrm{Et}_{3} \mathrm{~N}$ (1.17 $\mathrm{mL}, 8.4 \mathrm{mmol})$ in dry toluene (10 mL), cooled at $0{ }^{\circ} \mathrm{C}$ and under N_{2} atmosphere, was added via cannula a sol ution of aldehyde $5(2.54 \mathrm{~g}, 8.4 \mathrm{mmol})$ in dry toluene (32 mL). The reaction mixture was refluxed for 24 h in a Dean-Stark trap. More $\mathrm{Et}_{3} \mathrm{~N}(1.17 \mathrm{~mL}, 8.4 \mathrm{mmol})$ was added, and after 24 h at reflux, the reaction mixture was filtered and the solvent was evaporated to give an oil which was chromatographed (hexane/ AcOEt, 3:7) to yield oxazol opiperidone (3S,6R,9S)-Cbz-4b-OMe ($555 \mathrm{mg}, 19 \%$) as an orange oil, and a yellow foam identified as a $10: 1$ diastereomeric mixture of compound ($35,65,95$)-Cbz-4a-OMe and a third isomer (3R,6S,9S)-Cbz-4c-OMe (1.14 g, 39\%). Oxazolopiperidone (3S,6R,9S)-Cbz-4b-OMe (higher R_{f}): $[\alpha]^{22} \mathrm{D}=+98.5$ (c 1, CHCl_{3}); IR (NaCl) 3380, 1742, 1721, and $1667 \mathrm{~cm}^{-1} ; 1 \mathrm{H}$ NMR 1.61 (dtd, $\mathrm{J}=13,11$ and $5.5 \mathrm{~Hz}, 1 \mathrm{H}$), 1.99 (ddd, J $=14.5,8.5,5 \mathrm{~Hz}, 1 \mathrm{H}), 2.13-2.20(\mathrm{~m}, 1 \mathrm{H}), 2.24-$ $2.28(\mathrm{~m}, 1 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}), 3.74(\mathrm{dd}, \mathrm{J}=9,7 \mathrm{~Hz}, 1 \mathrm{H}), 4.10(\mathrm{dt}$, $\mathrm{J}=11,5 \mathrm{~Hz}, 1 \mathrm{H}), 4.24(\mathrm{t}, \mathrm{J}=9 \mathrm{~Hz}, 1 \mathrm{H}), 4.83(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.85$ (dd, J = 9, 7 Hz, 1H), $5.04(\mathrm{~s}, 2 \mathrm{H}), 5.72$ (br s, 1H), $7.35(\mathrm{~s}, 5 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR 23.9, 24.5, 51.2, 52.7, 56.1, 66.8, 67.0, 86.8, 128.0, 128.1, 128.4, 136.2, 155.9, 168.7, 170.1. EIMS m/z 348 (M ${ }^{+}$, 5), 257 (5), 241 (9), 197 (12), 130 (13), 91 (100). Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{6}$: C, 58.61; H, 5.79; N, 8.04. Found: C, 58.58; H, 5.99; N, 7.77. Oxazolopiperidone Cbz-4c-OMe (from a 10:1 mixture of $4 \mathbf{a}$ and $\mathbf{4 c}$, lower R_{f}): ${ }^{1} H$ NMR 1.69-1.77 (m, 2H), 1.82-1.89 (m, 1H), 2.18-2.32 (m, 2H), $3.69(\mathrm{~s}, 6 \mathrm{H}), 3.74$ (dd, J $=9,7 \mathrm{~Hz}, 2 \mathrm{H}$), $4.02(\mathrm{t}, \mathrm{J}=5 \mathrm{~Hz}, 1 \mathrm{H}), 4.19(\mathrm{~d}, \mathrm{~J}=10$ $\mathrm{Hz}, 1 \mathrm{H}), 4.42(\mathrm{~d}, \mathrm{~J}=7 \mathrm{~Hz}, 1 \mathrm{H}), 4.90(\mathrm{dd}, \mathrm{J}=8,6 \mathrm{~Hz}, 1 \mathrm{H})$, $5.04(\mathrm{~s}, 4 \mathrm{H}), 5.74(\mathrm{~d}, \mathrm{~J}=5 \mathrm{~Hz}, 1 \mathrm{H}), 7.27(\mathrm{~s}, 10 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR 24.1, 24.4, 49.3, 52.5, 56.1, 66.7, 69.9, 86.2, 127.8, 128.3, 136.2, 156.3, 166.7, 170.0.

[^8]Methyl (3S,6S,9S)-3-tert-Butoxycarbonylamino-2-oxo-7,1-oxazabicyclo[4.3.0]nonane-9-carboxylate (9). A solution of oxazolopiperidone Cbz-4a-OMe ($200 \mathrm{mg}, 0.28 \mathrm{mmol}$), $(\mathrm{Boc})_{2} \mathrm{O}(163 \mathrm{mg}, 0.74 \mathrm{mmol})$, and $10 \% \mathrm{Pd} / \mathrm{C}$ in $\mathrm{CH}_{3} \mathrm{OH}(5 \mathrm{~mL})$ was hydrogenated at $\mathrm{P}_{\mathrm{atm}}$ for 2 h at room temperature. An $\mathrm{AcOH} / \mathrm{NaOAc}$ buffer solution ($\mathrm{pH}=3,2 \mathrm{~mL}$) was added, and the mixture was stirred for 3 h at room temperature. The reaction mixture was filtered through Celite, and the resulting oil was chromatographed (hexane/AcOEt, 2:8) to yield the Bocoxazolopiperidone 9 ($112 \mathrm{mg}, 72 \%$) as a white foam: $[\alpha]^{22} \mathrm{D}=$ -102.3 (c 1, CHCl_{3}); IR (NaCl) 3320, 1749, 1714, $1671 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $1.45(\mathrm{~s}, 9 \mathrm{H}), 1.61-1.82(\mathrm{~m}, 2 \mathrm{H}), 2.31-2.38(\mathrm{~m}, 1 \mathrm{H})$, 2.48 (br s, 1H), $3.77(\mathrm{~s}, 3 \mathrm{H}), 3.84(\mathrm{dd}, \mathrm{J}=9,7 \mathrm{~Hz}, 1 \mathrm{H}), 4.17$ (br s, 1H), $4.44(\mathrm{t}, \mathrm{J}=9 \mathrm{~Hz}, 1 \mathrm{H}), 4.68(\mathrm{dd}, \mathrm{J}=9,7 \mathrm{~Hz}, 1 \mathrm{H})$, 4.92 (dd, J = 9, 4 Hz, 1H), 5.23 (br d, J $=6 \mathrm{~Hz}, 1 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR 25.0, 26.6, 28.1, 51.6, 52.5, 55.8, 68.3, 79.7, 87.9, 155.8, 167.1, 170.1; EIMS m/z 258 (M+ - C(CH $)_{3}$, 2), 197 (10), 130 (18), 57 (100). Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{6}$: C, 53.50; H, 7.05; N, 8.91. Found: C, 53.32; H, 7.38; N, 8.72.

Methyl (3S,6S,9S)-3-Amino-2-0xo-7,1-oxazabicyclo[4.3.0]-nonane-9-carboxylate (10). To a solution of oxazol opiperidone Cbz-4a-OMe ($2 \mathrm{~g}, 5.74 \mathrm{mmol}$) in $\mathrm{CH}_{3} \mathrm{OH}(57.4 \mathrm{~mL})$ was added $10 \% \mathrm{Pd} / \mathrm{C}(10 \mathrm{mg})$, and the mixture was hydrogenated at $\mathrm{P}_{\text {atm }}$ for 2 h , at room temperature. The reaction mixture was filtered through Celite, and the solvent was evaporated to yield amine 10 ($1.22 \mathrm{~g}, 99 \%$) as pale yellow oil: $[\alpha]^{22} \mathrm{D}=$ -157.3 ($\mathrm{c} 1, \mathrm{CHCl}_{3}$); IR (NaCl) 3410, 1741, $1658 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR 1.54-1.74 (m, 2H), 1.96 (br s, 2H), 2.24-2.38 (m, 2H), 3.34 (dd, J $=11,5 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.85(\mathrm{dd}, \mathrm{J}=9,7 \mathrm{~Hz}, 1 \mathrm{H})$, $4.44(\mathrm{t}, \mathrm{J}=9 \mathrm{~Hz}, 1 \mathrm{H}), 4.70(\mathrm{t}, \mathrm{J}=9 \mathrm{~Hz}, 1 \mathrm{H}), 4.92(\mathrm{dd}, \mathrm{J}=9$, $4 \mathrm{~Hz}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR 26.1, 26.8, 51.8, 52.5, 55.5, 68.2, 88.1, 170.1, 170.5. EIMS m/z 214 (M+, 2), 197 (36), 149 (50), 130 (88), 57 (100). Anal. Calcd for $\mathrm{C}_{9} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{4}: \mathrm{C}, 50.46 ; \mathrm{H}, 6.59$; N, 13.08. Found: C, 50.72; H, 6.47; N, 13.27.

Methyl (3S,6S,9S)-3-[9-(Fluorenyl)methoxycarbonyl-amino]-2-oxo-7,1-oxazabicyclo[4.3.0]nonane-9-carboxylate (11). To a solution of amine $\mathbf{1 0}(500 \mathrm{mg}, 2.34 \mathrm{mmol})$ in a mixture of $\mathrm{CH}_{3} \mathrm{CN}-\mathrm{H}_{2} \mathrm{O}(15 \mathrm{~mL}, 1: 1)$ was added $\mathrm{Fmoc}-\mathrm{OSu}$ ($800 \mathrm{mg}, 2.34 \mathrm{mmol}$). $\mathrm{Et}_{3} \mathrm{~N}$ was added until $\mathrm{pH}=8$ (10 drops), and the solution was stirred at room temperature for 5 h . The $\mathrm{CH}_{3} \mathrm{CN}$ was evaporated, and the remains were partitioned in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and $\mathrm{H}_{2} \mathrm{O}$. The mixture was acidified by careful addition of 1 N aqueous HCl . The layers were separated, and the aqueous phase was washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic extracts, dried and evaporated, gave a white solid, which was chromatographed (hexane/AcOEt, 1:9) to yield the F moc-oxazolopiperidone 11 ($836 \mathrm{mg}, 82 \%$): mp $160-161^{\circ} \mathrm{C}(A c O E t) ; ~[\alpha]^{22}{ }_{\mathrm{D}}$ $=-74.1$ ($\mathrm{c} 0.5, \mathrm{CHCl}_{3}$); IR (NaCl) 3417, 1736, 1720, $1669 \mathrm{~cm}^{-1}$; ${ }^{1}{ }^{1}$ H NMR $1.68-1.85(\mathrm{~m}, 2 \mathrm{H}), 2.35(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.59(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$, $3.78(\mathrm{~s}, 3 \mathrm{H}), 3.84(\mathrm{t}, \mathrm{J}=9 \mathrm{~Hz}, 1 \mathrm{H}), 4.19(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.22(\mathrm{t}, \mathrm{J}$ $=7 \mathrm{~Hz}, 1 \mathrm{H}), 4.39(\mathrm{br} \mathrm{d}, \mathrm{J}=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.45(\mathrm{t}, \mathrm{J}=9 \mathrm{~Hz}$, $1 \mathrm{H}), 4.69$ (dd, J $=9,7 \mathrm{~Hz}, 1 \mathrm{H}), 4.92(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 5.49(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$, 7.31 (td, J $=7.5,1 \mathrm{~Hz}, 2 \mathrm{H}$), $7.40(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}$), 7.60 (dd, $\mathrm{J}=7,3 \mathrm{~Hz}, 2 \mathrm{H}), 7.76(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR 24.8, 26.5 , 47.0, 52.0, 52.6, 55.7, 66.8, 68.3, 87.9, 119.8, 125.0, 126.9, 127.5, 141.1, 143.8, 156.3, 166.6, 170.0. EIMS m/z 259 (${ }^{+}+$Fmoc, 0.1), 196 (22), 178 (100), 165 (97), 130 (16), 57 (40). Anal. Calcd for $\mathrm{C}_{24} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{6}$: C, 66.05; H,5.54; N, 6.42. Found: C, 66.73; H, 5.34; N, 6.42.
(35,65,9S)-3-Benzyloxycarbonylamino-2-oxo-7,1-oxaza-bicyclo[4.3.0]nonane-9-carboxylic Acid (12). To a solution of oxazol opiperidone Cbz-4a-OMe ($820 \mathrm{mg}, 2.35 \mathrm{mmol}$) in $\mathrm{CH}_{3}-$ $\mathrm{OH}\left(5.5 \mathrm{~mL}\right.$) cooled at $0^{\circ} \mathrm{C}$ was added aqueous 1 N NaOH ($5,18 \mathrm{~mL}, 5,18 \mathrm{mmol}$), and the mixture was stirred for 1 h . The reaction was quenched by addition of 1 N HCl at $0^{\circ} \mathrm{C}$, until $\mathrm{pH}=1$. The $\mathrm{CH}_{3} \mathrm{OH}$ was evaporated, the residue was partitioned with AcOEt- $\mathrm{H}_{2} \mathrm{O}$, and the organic layer was washed with brine. The organic phase, dried and evaporated, yielded acid $\mathbf{1 2}$ ($744 \mathrm{mg}, 95 \%$) as a white foam: IR (NaCl) 3380, 3200, 1720, $1666 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR 1.63-1.95 (m, 2H), 2.46 (br $\mathrm{s}, 2 \mathrm{H}), 4.04(\mathrm{t}, \mathrm{J}=8 \mathrm{~Hz}, 1 \mathrm{H}), 4.13-4.19(\mathrm{~m}, 1 \mathrm{H}), 4.42(\mathrm{t}, \mathrm{J}=$ $9 \mathrm{~Hz}, 1 \mathrm{H}), 4.64(\mathrm{t}, \mathrm{J}=8 \mathrm{~Hz}, 1 \mathrm{H}), 4.84(\mathrm{br} \mathrm{d}, \mathrm{J}=5 \mathrm{~Hz}, 1 \mathrm{H})$, $5.11(\mathrm{~s}, 2 \mathrm{H}), 5.72(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 5.98(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.35(\mathrm{~s}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR 24.7, 26.6, 51.7, 56.2, 67.0, 68.0, 87.9, 128.0, 128.4, 136.1,
156.6, 168.7, 170.9; EIMS m/z 334 (M+ ${ }^{+}$7), 290 (1), 227 (12), 178 (48), 108 (47), 91 (100). Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{6}$: C, 55.64; H, 5.61; N, 8.11. Found: C, 55.64; H, 5.38; N, 8.22.
(3S,6S,9S)-3-[9-(Fluorenyl)methoxycarbonylamino]-2-oxo-7,1-oxazabicyclo[4.3.0]nonane-9-carboxylic Acid (13). To a solution of oxazolopiperidone $11(60 \mathrm{mg}, 0.13 \mathrm{mmol})$ in THF (2 mL), cooled at $0^{\circ} \mathrm{C}$, was added aqueous 1 N NaOH $(0.3 \mathrm{~mL}, 0.3 \mathrm{mmol})$, and the mixture was stirred at $0^{\circ} \mathrm{C}$ for 1 h. The reaction was quenched by addition of 1 N HCl , until $\mathrm{pH}=1$, at $0^{\circ} \mathrm{C}$. The $\mathrm{CH}_{3} \mathrm{OH}$ was evaporated, and the remains were partitioned in $\mathrm{AcOEt}-\mathrm{H}_{2} \mathrm{O}$. The organic layer was washed with brine, dried, and evaporated to yield acid $\mathbf{1 3}$ (45 $\mathrm{mg}, 77 \%$) as a white solid: $\mathrm{mp} 200-202{ }^{\circ} \mathrm{C}(\mathrm{AcOEt}) ;[\alpha]^{22} \mathrm{D}=$ -114.7 ($\mathrm{c} 0.5, \mathrm{CHCl}_{3}$); IR (NaCl) 3417, 3010, 1726, $1694 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $1.68-1.85(\mathrm{~m}, 2 \mathrm{H}), 2.35(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.59(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$, $3.84(\mathrm{t}, \mathrm{J}=9 \mathrm{~Hz}, 1 \mathrm{H}), 4.19(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.22(\mathrm{t}, \mathrm{J}=7 \mathrm{~Hz}, 1 \mathrm{H})$, 4.39 (br d, J $=6.5 \mathrm{~Hz}, 2 \mathrm{H}$), 4.45 (t, J $=9 \mathrm{~Hz}, 1 \mathrm{H}), 4.69$ (dd, J $=9,7 \mathrm{~Hz}, 1 \mathrm{H}), 4.92(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 5.49(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.31(\mathrm{td}, \mathrm{J}=$ $7.5,1 \mathrm{~Hz}, 2 \mathrm{H}$), $7.40(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.60(\mathrm{dd}, \mathrm{J}=7,3 \mathrm{~Hz}$, $2 \mathrm{H}), 7.76(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3} / \mathrm{CD}_{3} \mathrm{OD}\right) 24.8$, $25.5,47.0,51.6,56.0,66.9,68.2,87.9,119.8,125.0,127.0,127.6$, 141.1, 143.5 and 143.8, 156.6, 167.7, 171.1; EIMS m/z 244 (M ${ }^{+}$ - Fmoc, 0.1), 196 (13), 178 (100), 165 (48), 57 (15). Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{6}$: C, 65.39; H, 5.25; $\mathrm{N}, 6.63$. Found: C, 65.39; H, 5.45; N, 6.37.
(35,6S,9S)-3-Benzyloxycarbonylamino-2-oxo-7,1-oxaza-bicyclo[4.3.0]nonane-9-methylcarboxamide (14a). To a saturated solution of $\mathrm{CH}_{3} \mathrm{NH}_{2}$ in $\mathrm{CH}_{3} \mathrm{OH}(28 \mathrm{~mL})$, cooled at $-40{ }^{\circ} \mathrm{C}$, was added oxazolopiperidone Cbz-4a-OMe (200 mg , 0.57 mmol), and the tube was sealed. The reaction mixture was stirred at room temperature for 12 h . More $\mathrm{CH}_{3} \mathrm{NH}_{2}$ was bubbled into the mixture, and the reaction was continued for 48 h . The mixture was filtered, and the solvent was evaporated to give an oil that was chromatographed ($\mathrm{AcOEt} / \mathrm{CH}_{3} \mathrm{OH}, 98$: 2) to yield amide 14a (97 mg, 50\%): $[\alpha]^{22} \mathrm{D}=-87.4$ ($\mathrm{c} 1, \mathrm{CHCl}_{3}$); IR (NaCl) 3350, $1702,1663 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}) 1.54 (ddd, $\mathrm{J}=13,10,3 \mathrm{~Hz}, 1 \mathrm{H}), 1.98-2.06(\mathrm{~m}, 1 \mathrm{H}), 2.13-2.23(\mathrm{~m}, 1 \mathrm{H})$, 2.33 (ddd, J $=13,7,3 \mathrm{~Hz}, 1 \mathrm{H}$), 2.68 (d, J $=5 \mathrm{~Hz}, 3 \mathrm{H}$), 3.70 (dt, J $=11,6 \mathrm{~Hz}, 1 \mathrm{H}), 4.03(\mathrm{t}, \mathrm{J}=8 \mathrm{~Hz}, 1 \mathrm{H}), 4.34(\mathrm{t}, \mathrm{J}=9 \mathrm{~Hz}$, $1 \mathrm{H}), 4.65(\mathrm{t}, \mathrm{J}=8 \mathrm{~Hz}, 1 \mathrm{H}), 4.77(\mathrm{dd}, \mathrm{J}=9,4 \mathrm{~Hz}, 1 \mathrm{H}), 5.02(\mathrm{~s}$, $2 \mathrm{H}), 5.67(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.22(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.29-7.35(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{1} \mathrm{H}$ NMR ($\mathrm{C}_{6} \mathrm{D}_{6}$) $0.74-0.81(\mathrm{~m}, 1 \mathrm{H}), 1.20-1.25(\mathrm{~m}, 1 \mathrm{H}), 1.30-1.36$ $(\mathrm{m}, 2 \mathrm{H}), 2.39(\mathrm{~d}, \mathrm{~J}=4 \mathrm{~Hz}, 3 \mathrm{H}), 3.16(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.85(\mathrm{t}, \mathrm{J}=8.5$ $\mathrm{Hz}, 2 \mathrm{H}), 4.14(\mathrm{dd}, \mathrm{J}=9.5,4 \mathrm{~Hz}, 1 \mathrm{H}), 4.35(\mathrm{ta}, \mathrm{J}=7 \mathrm{~Hz}, 1 \mathrm{H})$, 4.66 and $4.74(2 \mathrm{~d}, \mathrm{~J}=12.5 \mathrm{~Hz}, 1 \mathrm{H}$ each $), 6.73(\mathrm{~d}, \mathrm{~J}=7 \mathrm{~Hz}$, 1H), 6.75-6.85 (m, 5H), $7.05(\mathrm{~s}, 1 \mathrm{H})$; ${ }^{1} \mathrm{H}$ NMR (DMSO-d ${ }_{6}$) $1.52-1.60(\mathrm{~m}, 1 \mathrm{H}), 1.75-1.82(\mathrm{~m}, 1 \mathrm{H}), 1.94-1.98(\mathrm{~m}, 1 \mathrm{H})$, $2.18-2.23(\mathrm{~m}, 1 \mathrm{H}), 2.57(\mathrm{~d}, \mathrm{~J}=4,5 \mathrm{~Hz}, 3 \mathrm{H}), 3.67(\mathrm{t}, \mathrm{J}=8 \mathrm{~Hz}$, $1 \mathrm{H}), 3.94(\mathrm{dt}, \mathrm{J}=10,7 \mathrm{~Hz}, 1 \mathrm{H}), 4.33(\mathrm{t}, \mathrm{J}=9 \mathrm{~Hz}, 1 \mathrm{H}), 4.43(\mathrm{t}$, $\mathrm{J}=8 \mathrm{~Hz}, 1 \mathrm{H}), 4.81(\mathrm{dd}, \mathrm{J}=9,4 \mathrm{~Hz}, 1 \mathrm{H}), 5.03(\mathrm{~s}, 2 \mathrm{H}), 7.29-$ $7.35(\mathrm{~m}, 5 \mathrm{H}), 7.68(\mathrm{~d}, \mathrm{~J}=4 \mathrm{~Hz}, 1 \mathrm{H}), 7.71(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) 24.1,26.1,26.7,52.1,56.9,67.1,68.3,87.4$, 127.7, 128.2 and 128.5, 135.9, 156.5, 167.7, 169.4; EIMS m/z 347 ($M^{+}, 1$), 289 (3), 181 (11), 153 (15), 108 (43), 91 (100). Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{6} \cdot 2 / 3 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 56.97 ; \mathrm{H}, 6.25 ; \mathrm{N}, 11.72$. Found: C, 56.97; H, 6.03; N, 11.47.
(3S,6R,9S)-3-Benzyloxycarbonylamino-2-oxo-7,1-oxaza-bicyclo[4.3.0]nonane-9-methylcarboxamide (14b). Operating as above, from oxazol opi peridone Cbz-4b-OM e (200 mg , 0.57 mmol) and a saturated solution of $\mathrm{CH}_{3} \mathrm{NH}_{2}$ in $\mathrm{CH}_{3} \mathrm{OH}$ $(28 \mathrm{~mL})$, amide 14b (99 mg, 51\%) was obtained: $[\alpha]^{22} \mathrm{D}=+79.7$ ($\mathrm{c} 1, \mathrm{CHCl}_{3}$); ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) 1.49$ (tdd, $\mathrm{J}=13,9.5$ and 3 Hz , $1 \mathrm{H}), 1.98(\mathrm{q}, \mathrm{J}=13 \mathrm{~Hz}, 1 \mathrm{H}), 2.14$ (dddd, $\mathrm{J}=13,7,4$ and 3 $\mathrm{Hz}, 1 \mathrm{H}), 2.28$ (ddd, $\mathrm{J}=13,7$ and $4 \mathrm{~Hz}, 1 \mathrm{H}), 2.67(\mathrm{~d}, \mathrm{~J}=5 \mathrm{~Hz}$, $3 \mathrm{H}), 3.70(\mathrm{t}, \mathrm{J}=4 \mathrm{~Hz}, 1 \mathrm{H}), 4.03(\mathrm{t}, \mathrm{J}=8 \mathrm{~Hz}, 1 \mathrm{H}), 4.34(\mathrm{t}, \mathrm{J}=$ $9 \mathrm{~Hz}, 1 \mathrm{H}), 4.65(\mathrm{t}, \mathrm{J}=8 \mathrm{~Hz}, 1 \mathrm{H}), 4.77(\mathrm{dd}, \mathrm{J}=9,4 \mathrm{~Hz}, 1 \mathrm{H})$, $5.03(\mathrm{~s}, 2 \mathrm{H}), 5.67(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.22(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.29-7.35(\mathrm{~m}, 5 \mathrm{H})$; ${ }^{1} \mathrm{H}$ NMR (DMSO-d 6) 1.56 (tdd, J $=13,9.5,3 \mathrm{~Hz}, 1 \mathrm{H}$), 1.79 (q , $\mathrm{J}=13 \mathrm{~Hz}, 1 \mathrm{H}), 1.94-1.99(\mathrm{~m}, 1 \mathrm{H}), 2.19-2.22(\mathrm{~m}, 1 \mathrm{H}), 2.58$ $(\mathrm{d}, \mathrm{J}=4.5 \mathrm{~Hz}, 3 \mathrm{H}), 3.68(\mathrm{dd}, \mathrm{J}=8,7 \mathrm{~Hz}, 1 \mathrm{H}), 3.93(\mathrm{dt}, \mathrm{J}=$ $10,7 \mathrm{~Hz}, 1 \mathrm{H}), 4.32(\mathrm{t}, \mathrm{J}=9 \mathrm{~Hz}, 1 \mathrm{H}), 4.43(\mathrm{t}, \mathrm{J}=8 \mathrm{~Hz}, 1 \mathrm{H})$, 4.81 (dd, J $=9,4 \mathrm{~Hz}, 1 \mathrm{H}), 5.04(\mathrm{~s}, 2 \mathrm{H}), 7.29-7.35(\mathrm{~m}, 5 \mathrm{H})$, $7.68(\mathrm{~d}, \mathrm{~J}=4 \mathrm{~Hz}, 1 \mathrm{H}), 7.70(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) 24.2,26.2,26.8,52.2,56.9,67.2,68.2,87.3,127.8,128.3$ and 128.6, 135.8, 156.5, 167.7, 169.3.

Molecular Modeling Studies. Theoretical conformational analyses of compounds $\mathbf{1 4 a}$ and $\mathbf{1 4 b}$ were performed using the CHARMM24b2 program package ${ }^{28}$ and the CHARMm 23.1 force field. ${ }^{29}$ To get insight on the possible conformations of these compounds, a simulated annealing approach was used to sample their conformational space. One hundred structures were obtained by subsequent cycles of heating (20 ps from 0 to 1000 K), cooling (20 ps from 1000 to 0 K), and energy minimization (100 steps steepest descend and 10000 steps adopted basis Newton-Raphson) and were clustered by conformation and energy. The resulting lowest energy conformations were the starting points for molecular dynamics studies using an implicit solvent description ($\epsilon=80$) and two different explicit solvent models for $\mathrm{H}_{2} \mathrm{O}$ and DMSO. NVT calculations at 300 K were performed using cubic boxes of $30 \AA$ side length and 1000 TIP3P water molecules, ${ }^{30}$ and of $31 \AA$ side length and 216 DMSO molecules, ${ }^{31}$ respectively. Periodic boundary conditions were applied. After adequate heating and equilibration of the system, evolution times were of 10 ns for the implicit water model and of 1 ns for both explicit models. 6000 structures were saved periodically from each trajectory for further analyses.

[^9]Trajectories were analyzed for conformational preferences measuring the dihedral angles $\psi_{2}, \phi_{2}, \psi_{3}, \phi_{3}$, and the β-turn descriptors R and τ (Figure 8). A conformation was accepted as a general β-turn if $\mathrm{R}<7 \AA$ and $-90^{\circ}<\tau<90^{\circ}$, and classified as one of the main β-turn types if none of the four dihedral angles differed by more than 30° from the standard torsion angle values as given in Table 2.

Acknowledgment. Support for this research has been provided by the CIRIT (Generalitat de Catalunya) through grants QFN95-4703, 1997SGR-00075, and 1999SGR-00077, and by the DGICYT (Ministerio de Educación y Cultura, Spain) through grants PB97-0976 and 2F D97-0293. We also thank the MEC for a fellowship given to M.A.E. and CESCA for computing facilities and financial support to M.T.

Supporting Information Available: Graphic representation of the ${ }^{1} \mathrm{H}$ NMR chemical shift of the NH protons of pseudodipeptide 14b at different proportions of $\mathrm{DMSO}_{6} \mathrm{~d}_{6}$ in $\mathrm{CDCl}_{3},{ }^{1} \mathrm{H}$ NMR spectra of compounds $\mathbf{1 4 a}$ and $\mathbf{1 4 b}$ at different proportions of DMSO- d_{6} in CDCl_{3}, calculated trajectories of compounds 14a and 14b in continuum, in water, and in DMSO, and snapshots of compound 14b in water (L-shaped) and in DMSO (unusual β-turn). This material is available free of charge via the Internet at http://pubs.acs.org.

J O000416V

[^0]: * To whom correspondence should be addressed. Phone: 34-934024540. Fax: 34-93-4024539.
 (1) For a review, see: Hanessian, S.; McNaughton-Smith, G.i Lombart H.-G.; Lubell, W. D. Tetrahedron 1997, 53, 12789-12854.
 (2) Nagai, U.; Sato, K. Tetrahedron Lett. 1985, 26, 647-650.
 (3) For the use of 1a in studies on gramicidin S, see: (a) Sato, K.; Nagai, U. J. Chem. Soc., Perkin Trans. 1 1986, 1231-1234. (b) Bach, A. C., II.; Markwalder, J . A.; Ripka, W. C. Int. J . Peptide Protein Res. 1991, 38, 314-323. (c) Andreu, D.; Ruiz, S.; Carrero, C.; Alsina, J.; Albericio, F.; J iménez, M. A.; de la Figuera, N.; Herranz, R.; GarcíaLópez, M. T.; González-Muñiz, R.J . Am. Chem. Soc. 1997, 119, 1057910586.
 (4) For studies on cyclosporin A, see: Belshaw, P. J.; Meyer, S. D.; J ohnson, D. D.; Romo, D.; Ikeda, Y.; Andrus, M.; Alberg, D. G.; Schultz, W. L.; Clardy, J .; Schreiber, S. L. Synth. Lett. 1994, 381 -392.
 (5) ' F or studies on RGD peptides, see: Haubner, R.; Schmitt, W.; H ^Izemann, G.; Goodman, S. L.; J ončyk, A.; Kessler, H. J . Am. Chem. Soc. 1996, 118, 7881-7891.
 (6) F or studies on Tendamistat, see: Etzkorn, F. A.; Guo, T.; Lipton, M. A.; Goldberg, S. D.; Bartlett, P. A. J. Am. Chem. Soc. 1994, 116, 10412-10425.
 (7) FOr studies on thrombin inhibitors, see: (a) Wagner, J .; K allen, J.; Ehrhardt, C.; Evenou, J .-P.; Wagner, D. J. Med. Chem. 1998, 41, 3664-3674. (b) Bachand, B.; DiMaio, J.; Siddiqui, M. A. Bioorg. Med. Chem. Lett. 1999, 9, 913-918.
 (8) For studies on dopamine receptor activity modulators, see: (a) Subasinghe, N. L.; Bontems, R.J.; M CIntee, E.; Mishra, R. K.;J ohnson, R. L. J. Med. Chem. 1993, 36, 2356-2361. For the use of a spiro derivative of $\mathbf{l a}$ in the study of dopamine receptor modulators, see: (b) KhaliI, E. M.; Ojala, W. H.; Pradhan, A.; Nair, V. D.; Gleason, W. B.; Mishra, R. K.; J ohnson, R. L. J. Med. Chem. 1999, 42, 628-637.
 (9) For studies on a zinc finger incorporating la as an artificial β-turn, see: Viles, J. H.; Patel, S. U.; Mitchell, J . B. O.; Moody, C. M.; J ustice, D. E.; Uppenbrink, J.; Doyle, P. M.; Harris, C. J.; Sadler, P. J.; Thornton, J. M. J. Mol. 'Biol. 1998, 279, 973-986.' For more examples, see ref 10 .

[^1]: (10) Nagai, U.; Sato, K.; Nakamura, R.; Kato, R. Tetrahedron 1993, 49, 3577-3592.
 '(11) Takeuchi, Y.; Marshall, G. R. J. Am. Chem. Soc. 1998, 120, 5363-5372.

[^2]: (12) (a) Perczel, A.; M cAllister, M. A.; Császár, P.; Csizmadia, I. G J. Am. Chem. Soc. 1993, 115, 4849-4858. (b) Richardson, J. Adv. Prot Chem. 1981, 34, 167-339. (c) Rose, G. D.; Gierasch, L. M.; Smith, J . A. Adv. Prot. Chem. 1985, 37, 1-109. (d) Chou, P. Y.; Fasman, G. D J. Mol. Biol. 1977, 115, 135-175. (e) Venkatachalam, C. M. Biopolymers 1968, 6, 1425-1436.

[^3]: (13) Fukuyama, T.; Liu, G.; Linton, S. D.; Lin, S.-C.; Nishino, H. Tetrahedron Lett. 1993, 34, 2577-2580.
 (14) Fukuyama, T.; Lin, S.-C.; Li, L. J . Am. Chem. Soc. 1990, 112, 7050-7051.

[^4]: (15) Amat, M.; Llor, N.; Hidalgo, J.; Bosch, J. Tetrahedron: Asymmetry 1997, 13, 2237-2240.
 (16) Siddiqui, M. A.; Préville, P.; Tarazi, M.; Warder, S. E.; Eby, P.; Gorseth, E.; Puumala, K.; DiMaio, J. Tetrahedron Lett. 1997, 38, 88078810.
 (17) Baldwin, J. E.; Lee, E. Tetrahedron 1986, 42, 6551-6554.
 (18) Compound 4c was always isolated together with 4a. The C3 epimerization in the basic medium probably occurs through the formation of a 4H-oxazolo-5-one, rather than through a keto-enol tautomeric equilibrium. ${ }^{19}$ This would explain why the epimerization is not observed in the reaction at room temperature, in which the protecting N -hydroxymethyl chain is lost only during the $\mathrm{K}_{2} \mathrm{CO}_{3}$ treatment.

[^5]: (19) Lloyd-Williams, P.; Albericio, F .; Giralt, E. Chemical Approaches to the Synthesis of Peptides and Proteins; CRC Press: Boca Raton, FL, 1997; pp 116-119.
 (20) The acyliminium salt 8 could be formed either from imine 6 through an imine-enamine tautomeric equilibrium in the basic medium, or by reaction of 5 on the oxazolidone carbonyl group, via an amide intermediate.
 (21) The stereocontrolled cyclization of chiral oxazolopiperidones is well documented. See, for instance: (a) Romo, D.; Meyers, A. I. Tetrahedron 1991, 47, 9503-9569, and references therein. (b) Husson, H.-P.; Royer, J. Chem. Soc. Rev. 1999, 6, 383-394. (c) See also ref 15 ,
 (22) No epimerization was observed when treating pure Cbz-4a-OMe with TFA in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at room temperature for 30 min .

[^6]: (23) André, F.; Vicherat, A.; Boussard, G.; Aubry, A.; Marraud, M. J. Peptide Res. 1997, 50, 372-381.
 (24) (a) Belvisi, L.; Gennari, C.; Mielgo, A.; Potenza, D.; Scolastico, C. Eur. J. Org. Chem. 1999, 389-400 and references therein. (b) Kessler, H. Angew. Chem., Int. Ed. Engl. 1982, 21, 512-523 and references therein.

[^7]: (25) For an example of an L-shaped conformation of the Ala-Pro moiety in a cyclic peptide, see: Brown, J . N.; Teller, R. G. J. Am. Chem. Soc. 1976, 98, 7565-7569.

[^8]: (26) Estiarte, M. A.; de Souza, M. V. N.; Del Río, X.; Dodd, R. H.; Rubiralta, M.; Diez, A. Tetrahedron 1999, 55, 10173-10186.
 (27) Aldehyde 5: $[\alpha]^{22} \mathrm{D}=+92\left(\mathrm{c}=1, \mathrm{CH}_{3} \mathrm{CN}\right)\left[\right.$ lit. ${ }^{14}[\alpha]^{22} \mathrm{D}=+89(\mathrm{c}$ $=1.4, \mathrm{MeCN})$].

[^9]: (28) Brooks, B. R.; Bruccoleri, R. E., Olafson, B. D., States, D. J. Swaminathan, S.; Karplus, M. J. Comput. Chem. 1983, 4, 187-217.
 (29) Momany, F. A.; Rone, R. J . Comput. Chem. 1992, 13, 888-900. b. Momany, F. A.; Rone, R.; Kunz, H.; Frey, R. F., Newton, S. Q.; Shäfer, L. THEOCHEM 1993, 286, 1-18.
 (30) J orgensen, W. L.; Chandrasekhar, J .; M adura, J . D.; I mpey, R. W.; Klein, M. L. J. Chem. Phys. 1983, 79, 926-935.
 (31) Liu, H.; Müller-Plathe, F .; van Gunsteren, W. F. J . Am. Chem. Soc. 1995, 117, 4363-4365.

